
Detecting and Resolving Feature Interactions in Cyber-Physical Systems
Using Formal Methods

H. D. Walker, S. L. Ricker and H. Marchand

Abstract— We investigate the use of formal methods to detect
and resolve feature interactions (FI) in cyber-physical systems
(CPS). These systems are often made up of multiple components
that may interact with each other in unexpected and unwanted
ways, potentially creating a security risk. Specifically, we use
supervisory control theory to examine FI in a smart home, an
example of a CPS. With the rising adoption of smart home
devices, mitigating these interaction threats at the modelling
stage is important before they are installed in homes. We
present an extended taxonomy of FI threats that affect such
a CPS. We demonstrate how one such threat, chaotic device
management (Codema), can be detected and resolved in a system
comprised of a smart light bulb that supports two disjointed
device management channels.

I. INTRODUCTION

The concept of feature interactions (FI) originated in
software engineering. An FI occurs when two features are
integrated, and the intended functionality is modified or
negatively affects the overall system behavior. While FI
research initially took place in the context of telephony
systems [1], after nearly thirty years of research, the results
are primarily limited to the specifics of those systems [2].
Recently, however, FI studies have moved to the domain of
cyber-physical systems (CPS) [3].

CPS are systems that have both computational abilities and
the ability to interact with their environment [4] and are part
of the Internet of Things (IoT). CPS are far more complex
than telephone systems, and are often made up of multiple
components that perform different functions, and which
may come from different manufacturers. As a result, these
systems are vulnerable to FIs, and due to their complexity,
much of the work done in telephony does not carry over to
CPS. In this paper, we are interested in examining FIs in
a specific instance of a CPS: a smart home IoT augmented
with sensors and actuators.

Smart homes can include any number of Internet-enabled
smart devices, which can interact with each other and
their environment. The benefits of these interactions include
convenience and improved energy efficiency [5]. However,
with the increasing prevalence of smart homes, it is more
important than ever that this technology is secure.

H. D. Walker and S. L. Ricker are with the Department of Mathematics
and Computer Science, Mount Allison University, Sackville, NB, CANADA.
Email: {hdwalker,lricker}@mta.ca

H. Marchand is with the University of Rennes, Inria, CNRS and IRISA,
Rennes, FRANCE. Email: herve.marchand@inria.fr

We acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC), [funding reference number 595677].

Cette recherche a été financée par le Conseil de recherches en sciences
naturelles et en génie du Canada (CRSNG), [numéro de référence 595677].

FIs in smart home settings bear severe digital and physical
security implications. The functionality of a smart home
device is managed by a device management channel (DMC).
Examples of DMCs include a device’s proprietary app, or
third-party management channels such as Amazon Alexa,
Google Home, Apple Home, Zigbee, Z-Wave, and others.
Many smart devices support multiple DMCs so that users
can choose which one(s) they wish to use [6], [7]. DMCs
that operate entirely independently of one another are said
to be disjointed, and can leave systems vulnerable to FIs. In
[6], this phenomenon is called chaotic device management
(Codema). Notably, the authors were able to exploit dis-
jointed DMCs in various smart devices, including smart locks
and garage door openers. In a real-world setting this scenario
could be catastrophic, potentially allowing bad actors to gain
physical access to the user’s home. In addition to degrading
systems’ security, FIs cause unwanted behaviors that violate
consumers’ expectations of how their devices should work
and diminish their satisfaction [8].

Strategies already exist for detecting FIs in CPS: exam-
ples include mental models [9], model checking [10], and
software solutions [11]. Formal methods have been used to
model IoT [12], however, to our knowledge, they have not
yet been used to examine FIs in this domain. We want to
use formal methods to verify that a system is functioning
correctly at the modeling stage. Such approaches reduce the
cost of developing software [13] and make it possible to
eradicate many kinds of bugs that lead to unsafe software,
such as buffer overruns and flaws in protocols [14], [15].
Despite their potential positive impact, formal methods are
underused in software development, in part due to their
perceived difficulty [16].

To detect and resolve FIs in CPS, we propose applying
supervisory control theory [17], where systems are typi-
cally modeled as finite automata. To facilitate modeling the
complex behavior of CPS, we instead use extended finite
automata (EFAs) [18]. Our aim is to address FI issues before
the system is built, thus improving the security and reliability
of these systems and the efficiency of their development.

In Section II, we present relevant background in EFAs,
control theory, and modeling CPS. A taxonomy of FI threats
that affect CPS, developed by [11], is discussed in Section
III and extended in III-D. Section IV features an example
of a control-theoretic approach to detecting and resolving an
FI in a modeled CPS. Finally, in Section V we discuss the
example as well as future research in using formal methods
to study CPS.

2025 IEEE 19th International Conference on Control & Automation (ICCA)
June 30 - July 3, 2025. Tallinn, Estonia

979-8-3315-9559-3/25/$31.00 ©2025 IEEE 274

II. BACKGROUND AND NOTATION

In this section, we present the notation and theoretical
background necessary to discuss the taxonomy and our
example.

A. Extended Finite Automata

In order to rigorously study the behavior of a complex
system made up of discrete components, we use extended
finite automata (EFAs) [18]. An EFA is a tuple

G = (Q,V,Σ,∆, q0, Qm),

where
• Q is a finite set of states;
• V = {v1, . . . , vp} is a set of p one-dimensional data

variables, where each vi ∈ V is defined over domain
Di, for i ∈ {1, . . . , p};

• Σ is a finite set of events;
• ∆ ⊆ Q×Q×Σ∗×G×FD→D is the transition relation

(defined below), closed under concatenation, where G
denotes the set of all boolean formulas over V , FD→D

is the set of all functions from D to D, where D =
D1 × . . .×Dp;

• q0 ∈ Q is the initial state; and,
• Qm ⊆ Q is the set of marked states.

Each transition δ ∈ ∆ is a tuple δ = (q, q′, e, g, f), where
• q, q′ ∈ Q are the transition’s source and destination

states, respectively;
• e ∈ Σ is the event that triggers the transition;
• g ∈ G is the enabling guard for the transition; and,
• f ∈ FD→D is the transition’s data update function.

A transition δ = (q, q′, e, g, f) will be carried out when e
occurs if G is in state q and the guard g is true. After δ
occurs, G will be in state q′ and the data variables will be
updated according to f .

We will find it useful to compose EFAs. The parallel
composition of two EFAs G1 = (Q1,V1,Σ1,∆1,q0,1,Qm,1)
and G2 = (Q2,V2,Σ2, ∆2, q0,2, Qm,2) is the EFA G =
(Q,V,Σ,∆, q0, Qm), where Q = Q1 × Q2, V = V1 ∪ V2,
Σ = Σ1 ∪ Σ2, q0 = (q0,1, q0,2), and Qm = Qm,1 × Qm,2,
and ∆ is defined as follows: ∀(q1, q′1, e, g1, f1) ∈ ∆1,
∀(q2, q′2, e, g2, f2) ∈ ∆2,

• ∀e ∈ Σ1 \ Σ2, ((q1, q2), (q
′
1, q2), e, g1, f1) ∈ ∆;

• ∀e ∈ Σ2 \ Σ1, ((q1, q2), (q1, q
′
2), e, g2, f2) ∈ ∆; and,

• ∀e ∈ Σ2 ∩ Σ1, ((q1, q2), (q
′
1, q

′
2), e, g1 ∧ g2 ∧ [f1|Ds

=
f2|Ds

], f1 ⊕ f2) ∈ ∆,
where fi|Ds

, for i ∈ {1, 2}, denotes the restriction of fi to
the domain Ds , which is the domain of the shared variables,
i.e., V1 ∩ V2, and ⊕ denotes function composition.

B. Supervisory Control of EFAs

The goal of supervisory control theory [17] is to take
a model of an uncontrolled system G and conform it to
a specification of desired behavior Gs by synthesizing a
controller, if one exists, that disables undesirable behavior
that takes the system out of the specification into a state
q ∈ Qf , where Qf ⊂ Q is a set of forbidden states. Without

loss of generality, we assume Gs is a subautomaton of G,
with Gs = (Qs, Vs ⊆ V,Σ,∆s ⊆ ∆, q0, Qm,s ⊆ Qm),
where Qs = Q \ Qf . We employ the algorithm provided
in [18] to modify G in place, updating guards on transitions
in ∆ that may bring the system into a forbidden state in Qf .
A sketch of this algorithm is shown in Algorithm 1.

The existence of a controller is dependent on the control-
lability of Gs. To facilitate the control of G, we partition
∆ into the set of controllable transitions ∆c and the set of
uncontrollable transitions ∆uc = ∆\∆c. The supervisor can
only update the guards of transitions in ∆c. Given an EFA
G, a specification Gs, a set of forbidden states Qf , and a
set of controllable transitions ∆c, we say a state q ∈ Q is
(adapted from [18]):

• nonblocking if it is possible to reach a state q′ ∈ Qm

from q via a sequence of transitions δ ∈ ∆, taking into
consideration guards and updates to variables;

• safe if q ∈ Qs; and,
• controllable if q is safe and there are no uncontrollable

transitions (q, q′, e, g, f) ∈ ∆uc with q′ ∈ Qf

Then Gs is nonblocking, safe, and controllable if for every
q ∈ Qs, q is respectively nonblocking, safe, and controllable,
again considering guards and updates to variables.

Algorithm 1 (From [18]) Sketch of algorithm for supervisor
synthesis using EFAs.
Input: An EFA G = (Q,V,Σ,∆, q0, Qm) with a set of
forbidden states Qf ⊂ Q and a set of controllable transitions
∆c ⊆ ∆.

1: Create and initialize the nonblocking predicate Nq and
bad location predicate Bq to false for all q ∈ Q

2: For each q ∈ Q, change Nq to true if q ∈ Qm or if it is
possible to reach a state q′ from q so that Nq′ = true.
Repeat this step until there are no changes to Nq for any
q ∈ Q.

3: For each q ∈ Q, change Bq to true if q ∈ Qf , Nq =
false or there is a transition δ ∈ ∆uc that could take
the system from q to a state q′ that has Bq′ = true.
Repeat this step until there are no changes to Bq for any
q ∈ Q.

4: For each transition (q, q′, e, g, f) ∈ ∆c, change g to
false if q′ has Bq′ = true.

5: If there were changes to any guards, return to step 1.
Otherwise stop.

Result: Controllable transitions δ ∈ ∆c that may result in
the system entering a forbidden state have guard g = false
and are thus disabled.

C. modeling CPS

Now that we have discussed relevant background in EFAs
and supervisory control, we now discuss our approach to
modeling the behavior of CPS using EFAs. In [8], [11], the
behavior of cyber-physical systems is modeled using trigger-
condition-action (TCA) rules. A rule R is modeled as a tuple
R = (T,C,A), where T is the trigger, C = C1∧C2∧...∧Ck

275

wait exec

T ; C = true

A

Fig. 1. A TCA rule modeled as an EFA.

is a set of boolean conditions, and A is an action. When event
T occurs, if the condition C is satisfied, the action A will
be performed. Unwanted interactions between TCA rules on
one or more devices are called feature interactions (FIs) and
are the basis for the taxonomy presented in Section III.

We model a TCA rule using an EFA of the form of Fig. 1
by letting T,A ∈ Σ and C ∈ G. Here, the EFA begins in the
wait state and moves to the exec state when T occurs and
C is true. Event A then occurs, bringing the EFA back
to the wait state. As the EFA transitions back to the wait
state, it may update data variables according the transition’s
data update function fA. The ability to model the behavior
of a CPS in terms of TCA rules using EFAs will allow us
to identify feature interactions in modeled CPS and resolve
them using supervisory control.

III. TAXONOMY

Noting our approach to modeling CPS as EFAs, we now
model different FI threats that affect CPS, in order to facili-
tate their detection and resolution. A cross-app interference
threat occurs in a CPS when there are two TCA rules
R1 = (T1, C1, A1) and R2 = (T2, C2, A2) that may or may
not belong to different devices or pieces of software in the
system, and A1 interferes with T2, C2, or A2. A taxonomy
of these threats is provided in [11]. These threats are divided
into three categories: action-interference threats, trigger-
interference threats, and condition-interference threats. In
this section, we present these categories as well as several
sub-categories of threats, and extend the taxonomy with a
new category of threat.

A. Action-Interference Threats

An action-interference threat occurs when two rules R1

and R2 act on the same actuator, and their actions A1 and A2

have contradictory effects on the environment when triggered
simultaneously. As such, this category of threat is effectively
a race condition, and is thus not amenable to being modeled
using automata, as our EFA models do not take time into
account. We will therefore not model or discuss this class of
threat.

B. Trigger-Interference Threats

Trigger-interference threats occur when one rule triggers
another. They are further divided into three subcategories:
Covert Rules When the result of a rule R1’s action triggers

R2, i.e. A1 = T2, and the conditions are such that R2’s
action will execute after that of R1, i.e. C2 = true, this
creates a covert rule, where R1’s trigger and conditions
result in both R1 and R2’s actions being carried out. An
example of such an interaction would be R1 causing a

window to open when the CO2 level in a room rises
above a certain level, and R2 causing the heat to turn
on when the window is open. The result is a covert rule
that the heat will come on when the CO2 level is above
a certain level. This example is modeled using EFAs in
Fig. 2.

wait1 exec1

wait2 exec2

CO2 high

open window

open window

heat on

Fig. 2. Covert rule threat: CO2 high covertly causes heat on to occur.

Self Disabling A self disabling threat is a variation of a
covert rule where R2’s action disables R1. In other
words, A1 = T2 and fA2({C1 ∈ {true,false}}) =
{C1 = false}. For example, R1 may turn on the air
conditioner when the temperature rises above a set level,
and a R2 may cut power to the air conditioner when the
monthly power consumption exceeds a certain threshold
[11]. The result is that, under certain conditions, the
temperature rising above the set level will ultimately
result in power being cut to the air conditioner, disabling
R1. This example is modeled using EFAs in Fig. 3.

wait1 exec1

wait2 exec2

temp high ;
below power consumption threshold = true

air conditioner on

air conditioner on

note power consumption increase;
below power consumption threshold := false

Fig. 3. Self-disabling threat.

Loop Triggering R1 and R2’s conditions are both met, and
their actions trigger each other, i.e. A1 = T2 and
A2 = T1, and A1 and A2 contradict each other. A trivial
example would be one rule that opens a window every
time it is closed, and another rule that closes the same
window every time it is opened. This threat is modeled
using EFAs in Fig. 4.

C. Condition-Interference Threats
Condition-interference threats occur when one rule’s ac-

tion enables or disables other rules. They are further divided
into two categories:

276

wait1 exec1

wait2 exec2

close window

open window

open window

close window

Fig. 4. Loop-triggering threat

Disabling-Condition R1’s action causes R2’s condition
to cease to be satisfied, i.e. fA1({C2 ∈
{true,false}}) = {C2 = false}. An example of
a disabling condition threat would be R1 turning on
an exhaust fan when the stove temperature is above
200◦C, and R2 sounding an alarm when smoke is
detected and the exhaust fan is off. This threat is
modeled using EFAs in Fig. 5.

wait1 exec1

wait2 exec2

stove temp above 200◦C

turn on fan ; fan on := true

smoke detected ; fan on = false

sound alarm

Fig. 5. Disabling-condition threat

Enabling-Condition R1’s action causes R2’s condition to
become satisfied, i.e. fA1

({C2 ∈ {true,false}}) =
{C2 = true}. An example of such a threat would be
as follows: R1 turns on an outdoor porch light when
it is dark outside, and R2 turns on a security camera
when motion is detected and the porch light is on. This
threat is modeled using EFAs in Fig. 6.

wait1 exec1

wait2 exec2

darkness detected

turn on light ; light on := true

motion detected; light on = true

turn on camera

Fig. 6. Enabling-condition threat

Fig. 7. Management conflicts display characteristics of all three threat
categories.

D. Extension of the Taxonomy

We propose adding another type of cross-app interference
threat to this taxonomy, caused by poorly-behaved DMCs:
Management Conflict The device owner/manager cannot

control or tell which rules are enabled and disabled
on devices in the system. An example of such a
threat, called chaotic device management (Codema) is
presented in [6] and was successfully exploited by
the authors on multiple popular smart home devices.
This threat occurs when a device supports multiple
device management channels (DMCs), but the pieces
of software running on the device to support the dif-
ferent DMCs are disjointed: there is no communication
between the DMCs to establish which ones should be
enabled and which should be disabled. The result is a
device that can be covertly paired with and controlled
by a malicious actor without the owner’s knowledge.

This type of threat transcends the other three categories,
as illustrated in Fig. 7; such a threat may result in bad
actors competing for control of actuators (as in an action-
interference threat), introducing new rules that may trigger
or be triggered by others (as in a trigger-interference threat),
or spontaneously enabling and disabling existing rules (as in
a condition-interference threat).

In this section, we have introduced the taxonomy devel-
oped by [11], extended it to include a new class of threat, and
included EFA models of each threat in the taxonomy. Having
a taxonomy of threats and accompanying EFA models will
make identifying these in modeled systems possible, allow-
ing us to leverage supervisory control to disable behaviors
that lead to these conflicts.

IV. EXAMPLE

This example demonstrates an application of EFAs to
the detection and resolution of a management conflict in a
model of a simple CPS: a smart light bulb that supports two
disjointed DMCs. Such devices are increasingly common, a

277

Fig. 8. Example of a smart light bulb that supports two disjointed DMCs.

notable example being Philips Hue products which support
several different device management channels [19].

We model our bulb with the EFA in Fig. 9 and model each
DMC with the EFA in Fig. 10, where i identifies each unique
DMC (i ∈ {1, 2}). DMC i begins in the unpairedi state
with enabledi = true, and then moves into the waitingi

state after being paired with if enabledi = true. It will
then wait for instructions from whatever device has paired
with it. A turn oni event will occur when it is instructed to
turn the bulb on, and a turn offi event will occur when it is
instructed to turn the bulb off. The smart bulb itself begins
in the off state, and then turns on or off when instructed to
do so by either DMC. An informal diagram of this system
to aid intuition is shown in Fig. 8.

The model of the entire system is obtained by taking the
parallel composition of the EFAs for the bulb and the two
DMCs and is shown in Fig. 11. For this example, we assume
that all transitions are controllable and that all states are
marked.

For this example, our specification is that behavior which
results in more than one DMC being paired is illegal; if it is
possible for an unknown third party to pair to the bulb and
control it without the owner’s knowledge after it has been
paired to the owner’s preferred DMC, then that constitutes
a management conflict and is an example of Codema. Then
the two states in Fig. 11 in which both DMCs are paired
are forbidden (elements of Qf), and we draw them in red.
Our specification Gs is then the same automaton with these
states removed. We seek to synthesize a supervisor to restrict
the behavior of G to that allowed by Gs, and do so by
employing Algorithm 1. The result is that transitions into
the states where both DMCs have been paired are disabled,
shown in Fig. 12.

V. DISCUSSION

In the bulb example in Section IV, by modeling each
component individually and then composing them to obtain

off on

turn oni

turn offi

turn offi

turn oni

Fig. 9. Model of a smart light bulb.

unpairedi waitingi

pairi ;
enabledi

= true turn oni

turn offi

Fig. 10. Model of smart light bulb DMCs 1 and 2.

off,
unpaired1,
unpaired2

off,
waiting1,
unpaired2

off,
unpaired1,
waiting2

on,
waiting1,
unpaired2

off,
waiting1,
waiting2

on,
unpaired1,
waiting2

on,
waiting1,
waiting2

pair1;
enabled1

= true

pair2;
enabled2

= true

turn off1

turn on1

turn on1turn off1

turn off2

turn on2

turn on2turn off2

pair2;
enabled2 = true

pair1;
enabled1 = true

pair2;
enabled2

= true

pair1;
enabled1

= true

turn off1
turn off2

turn on1

turn on2

turn off1
turn off2

turn on1

turn on2

Fig. 11. Combined plant G and specification Gs. Red states are in Qf .

off,
unpaired1,
unpaired2

off,
waiting1,
unpaired2

off,
unpaired1,
waiting2

on,
waiting1,
unpaired2

on,
unpaired1,
waiting2

pair1
enabled1

= true

pair2
enabled2

= true

turn off1

turn on1

turn on1turn off1

turn off2

turn on2

turn on2turn off2

Fig. 12. System after carrying out Algorithm 1. Disabled transitions and
now-inaccessible states are removed.

278

a model of the system, we were able to detect FIs and
synthesize a supervisor to remove them, all before the system
was implemented. In this example, we assume that all events
are controllable. This is because, in this case, both DMCs
and the mechanism for turning the bulb on and off would
be pieces of software running on the smart bulb’s computer,
and their activity would be able to be monitored through its
operating system. Such a supervisor could be implemented as
a piece of software on the bulb given permission to disable
the software for one of the DMCs, block communication
with it, or otherwise prevent it from pairing after the other
has been paired with, as in Algorithm 2. In some situations,
however, it may not be the case that all of the undesirable
behavior can be controlled by one device.

Algorithm 2 Example implementation of supervisor from
Section IV.
Input: Event e ∈ Σ in G from Fig. 11.

1: if e = pair1 then
2: enabled2 := false
3: else if e = pair2 then
4: enabled1 := false
5: end if

Result: It is not possible for both DMCs to be paired at the
same time, and the management conflict is thus resolved.

In this paper, we used EFAs as our underlying model. One
limitation of EFAs, as with most varieties of finite automata,
is that they are static. This makes it challenging to model a
system which devices may enter and leave at will, a common
situation in smart homes and other IoT systems. Dynamic
input/output automaton (DIOA) [20] support such dynamics.
This kind of automaton has not yet been used to study CPS.
It is also of interest to apply strategies for the control of
reconfigurable software systems as introduced in [21] to IoT
systems. Additionally, due to the lack of consideration of
time in EFAs, we were not able to model action-interference
threats, which are analogous to race conditions. It is of
interest to us to find a model that will allow us to model
this class of threat.

In Section III, we extended the taxonomy presented in
[11], and plan to produce examples of using supervisory
control to resolve FIs from the remaining categories. We
also plan to study how real-life FIs in the literature fit into
these categories and add more categories and examples as
necessary.

In this paper, we briefly discussed the benefits of applying
formal methods to the study of FIs in CPS and presented a
taxonomy of cross-app interference threats that affect CPS.
Our contributions are an extension to said taxonomy to
include device management conflicts caused by disjointed
DMCs, EFA models of the threats in the taxonomy, and an
example of employing EFAs and supervisory control theory
to detect and resolve one such conflict in a model of a
realistic CPS. With these contributions, we hope to improve
the overall security of CPS by addressing FIs at the modeling
stage.

REFERENCES

[1] P. Zave, “Feature interactions and formal specifications in telecommu-
nications,” IEEE Computer, vol. 26, no. 8, pp. 20–30, 1993.

[2] S. Apel, J. Atlee, L. Baresi, and P. Zave, “Feature interactions: The
next generation,” Dagstuhl Reports, 2014.

[3] B. Gafford, T. Dürschmid, G. Moreno, and E. Kang, “Synthesis-
based resolution of feature interactions in cyber-physical systems,”
in 5th IEEE/ACM International Conference on Automated Software
Engineering, 2020.

[4] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, no. 1, pp. 161–166, 2011.

[5] B. K. Sovacool and D. D. F. Del Rio, “Smart home technologies
in Europe: A critical review of concepts, benefits, risks and policies,”
Renewable and sustainable energy reviews, vol. 120, p. 109663, 2020.

[6] Y. Jia, B. Yuan, L. Xing, D. Zhao, Y. Zhang, X. Wang, Y. Liu,
K. Zheng, P. Crnjak, Y. Zhang et al., “Who’s in control? on security
risks of disjointed IoT device management channels,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 1289–1305.

[7] B. Hammi, S. Zeadally, R. Khatoun, and J. Nebhen, “Survey on
smart homes: Vulnerabilities, risks, and countermeasures,” Computers
& Security, vol. 117, p. 102677, 2022.

[8] B. Huang, D. Chaki, A. Bouguettaya, and K.-Y. Lam, “A survey
on conflict detection in IoT-based smart homes,” ACM Computing
Surveys, vol. 56, no. 5, pp. 1–40, 2023.

[9] S. Yarosh and P. Zave, “Locked or not? mental models of iot feature
interaction,” in Proceedings of CHI, 2017, pp. 2993–2997.

[10] R. Trimananda, S. A. H. Aqajari, J. Chuang, B. Demsky, G. H. Xu,
and S. Lu, “Understanding and automatically detecting conflicting
interactions between smart home IoT applications,” in Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
2020, pp. 1215–1227.

[11] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app interference threats in
smart homes: Categorization, detection and handling,” in IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN). IEEE, 2020, pp. 411–423.

[12] M. Zhao, G. Privat, E. Rutten, and H. Alla, “Discrete control for
the internet of things and smart environments,” in 8th International
Workshop on Feedback Computing (Feedback Computing 13), 2013.

[13] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Computing Surveys (CSUR), vol. 28, no. 4,
pp. 626–643, 1996.

[14] E. Jaeger, “Study of the benefits of using deductive formal methods for
secure developments,” Ph.D. dissertation, Université Pierre et Marie
Curie-Paris VI, 2010.

[15] M. Oliveira, L. Ribeiro, É. Cota, L. M. Duarte, I. Nunes, and
F. Reis, “Use case analysis based on formal methods: an empirical
study,” in Recent Trends in Algebraic Development Techniques: 22nd
International Workshop, WADT 2014, Sinaia, Romania, September 4-
7, 2014, Revised Selected Papers 22. Springer, 2015, pp. 110–130.

[16] M. Gleirscher and D. Marmsoler, “Formal methods in dependable
systems engineering: a survey of professionals from Europe and North
America,” Empirical Software Engineering, vol. 25, pp. 4473–4546,
2020.

[17] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, 1987.

[18] L. Ouedraogo, R. Kumar, R. Malik, and K. Akesson, “Nonblocking
and safe control of discrete-event systems modeled as extended finite
automata,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 8, no. 3, pp. 560–569, 2011.

[19] Philips. Smart lighting. [Online]. Available: https://www.philips-
hue.com/en-ca

[20] P. C. Attie and N. A. Lynch, “Dynamic input/output automata: A
formal and compositional model for dynamic systems,” Information
and Computation, vol. 249, pp. 28–75, 2016.

[21] N. Berthier, F. Alvares, H. Marchand, G. Delaval, and E. Rutten,
“Logico- numerical control for software components reconfiguration,”
in IEEE Conference on Control Technology and Applications, 2017,
pp. 1599 – 1606.

279

